\square Code No. : 12035 (B)

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (C.S.E. : CBCS) II-Semester Main Examinations, January-2021 Discrete Structures

Time: $\mathbf{2}$ hours

Max. Marks: 60
Note: Answer any NINE questions from Part-A and any THREE from Part-B
Part-A (9 $\times 2=18$ Marks)

14. a) i) Define linear congruence. Solve the linear congruence $290 x \equiv$ $5(\bmod 357)$
b) What is meant by reductive absurdum. Use it to prove that $\sqrt{2}$ is not a rational number.
15. a)

Let $X=\{1,2,3,4,5,6,7\}$ and
$R=\{(x, y) / x-y$ is divisible by 3\}in X. Show that R is an equivalence relation.
b) How many positive integers not exceeding 1000 are divisible by 7 or 11 ?
16. a) Solve the recurrence relation $a_{n}-a_{n-1}-12 a_{n-2}=0, a_{0}=0, a_{1}=1$
b) Use generating functions to solve the recurrence relations $a_{r}=$ $a_{r-1}+a_{r-2}$ with $a_{1}=2$ and $a_{2}=3$
17. a) Show that $(A, *)$ is a non-abelian group where $A=R \times R$ and $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{ac}, \mathrm{bc}+\mathrm{d})$.
b) If ($\mathrm{F},+,$.) is a field then prove that it is an Integral Domain.
18. a) Show that $\sim(p \vee(\sim p \wedge q)$ and $\sim p \wedge \sim q)$ are logically Equivalent.
b) State and prove Fermat's Little theorem.
19. Answer any two of the following:
a) Show that congruence modulo m is an equivalence relation on integers.
b) Find all solutions of the recurrence relation $a_{n}-7 a_{n-1}+10 a_{n-2}=$ 4^{n}
c) If H is a non-empty sub-group of a group G then prove that H is a subgroup if and only if a) for all $a, b \in H, a b \in H$ b) for all $a \in H, a^{-1} \in H$.

7	5	2	1,12
7	4	2	1,12
7	4	3	1,12
7	3	3	1,12
7	4	4	1,12
7	3	4	1,12
7	4	5	1,12
7	2	5	1,12
7	5	1	1,12
7	2	2	1,12
7	3	3	1,12
7	4	4	1,12
7	2	5	1,12

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level- $\& 2$ 2)	38
2	Knowledge on application and analysis (Level-3 \& 4)	62
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	0

