Hall	Tick	et Nu	ımbe	r:				
-								

Code No. : 12035 (B)

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (C.S.E. : CBCS) II-Semester Main Examinations, January-2021 Discrete Structures

Time: 2 hours

Max. Marks: 60

Note: Answer any NINE questions from Part-A and any THREE from Part-B

Part-A (9 ×	2=	18	Marks)
----------	-----	----	----	--------

Q. No.	Stem of the question	M	L	СО	PO
1.	Translate "You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old" into a logical expression.	2	1	1	1,12
2.	R: Naveen is rich	2	1	1	1,12
	H: Naveen is happy are two statements. Convert the following statements in symbolic form				
	"Naveen is neither rich nor happy".				
3.	Find the gcd(1529, 14039).	2	1	2	1,12
4.	State the fundamental theorem of arithmetic.	2	1	2	1,12
5.	Define partial order relation.	2	1	3	1,12
6.	How many arrangements are there with the letters of the word MISSISSIPPI.	2	2	3	1,12
7.	Write the characteristic equation of $a_n = a_{n-1} + 6a_{n-2}$.	2	3	4	1,12
8.	Write the general form of the homogeneous linear recurrence relation.	2	1	4	1,12
9.	Define subgroup of a group.	2	1	5	1,12
10.	Find the identity element of the Ring (Z, \bigoplus, \odot) where	2	3	5	1,12
	$x \oplus y = x + y - 7$ and $x \odot y = x + y - 3xy$ for all $x, y \in Z$.				
11.	Write the negation of the statement	2	2	1	1,12
	Real number x, if $x > 3$ then $x^2 > 9$				
12.	If a b then prove that a bc for all a,b,c $\in Z$.	2	2	2	1,12
	Part-B (3 × 14 = 42 Marks)				
13. a)	Determine whether $[\sim q \land (p \rightarrow q)] \rightarrow \sim p$ is a Tautology.	7	3	1	1,12
b)	State and prove generalized pigeon-hole principle.	7	2	1	1,12

Code No. : 12035 (B)

b) Use generating functions to solve the recurrence relations $a_r = 7$ 3 4 1,12 $a_{r-1} + a_{r-2}$ with $a_1 = 2$ and $a_2 = 3$ 17. a) Show that (A,*) is a non-abelian group where A= R x R and (a,b) * (c,d) = (ac, bc+d). b) If (F, +, .) is a field then prove that it is an Integral Domain. 18. a) Show that $\sim (p \lor (\sim p \land q) \text{ and} (\sim p \land \sim q) \text{ are logically Equivalent.}$ b) State and prove Fermat's Little theorem. 19. Answer any <i>two</i> of the following: a) Show that congruence modulo m is an equivalence relation on integers. b) Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 7$ 4 4 1,12							
11. This matrix productive absolution over its prove that V is indexed and the prove of the prove that V is indexed and the prove of the prove that V is indexed and the prove of the prove that V is indexed and the prove of the prove that V is indexed and the prove that it is an integral Domain.7431,1216. a)b) If (F, +, .) is a field then prove that it is an integral Domain.7251,12b)b) State and prove Fermat's Little theorem.7221,1219. Answer any two of the following: a)a)a)a) <td>14.</td> <td>a)</td> <td></td> <td>7</td> <td>5</td> <td>2</td> <td>1,12</td>	14.	a)		7	5	2	1,12
$R = \{(x, y)/x - y \text{ is divisible by 3}\} in X.$ Show that R is an equivalence relation. b) How many positive integers not exceeding 1000 are divisible by 7 or 17 3 3 1,12 11? 16. a) Solve the recurrence relation $a_n - a_{n-1} - 12a_{n-2} = 0$, $a_0 = 0, a_1 = 1$ 7 4 4 1,12 b) Use generating functions to solve the recurrence relations $a_r = 7$ 3 4 1,12 $a_{r-1} + a_{r-2}$ with $a_1 = 2$ and $a_2 = 3$ 17. a) Show that $(A,*)$ is a non-abelian group where $A = R \ge R$ and (a,b) * $(c,d) = (ac, bc+d)$. b) If $(F, +, .)$ is a field then prove that it is an Integral Domain. c) If $(F, +, .)$ is a field then prove that it is an Integral Domain. c) State and prove Fermat's Little theorem. c) State and prove Fermat's Little theorem. c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub- c) If H is a non-empty sub-group of a group G then prove that H is a sub-		b)		7	4	2	1,12
equivalence relation.b)How many positive integers not exceeding 1000 are divisible by 7 or 11?16. a)Solve the recurrence relation $a_n - a_{n-1} - 12a_{n-2} = 0$, $a_0 = 0, a_1 = 1$ 74416. a)Solve the recurrence relation $a_n - a_{n-1} - 12a_{n-2} = 0$, $a_0 = 0, a_1 = 1$ 74411?b)Use generating functions to solve the recurrence relations $a_r = 7$ 34 $a_{r-1} + a_{r-2}$ with $a_1 = 2$ and $a_2 = 3$ 17. a)Show that $(A,*)$ is a non-abelian group where $A = R \times R$ and $(a,b) * (c,d) = (a, b,c+d)$.b)If $(F, +, .)$ is a field then prove that it is an Integral Domain.7218. a)Show that $\sim (p \vee (\sim p \land q))$ and $(\sim p \land \sim q)$ are logically Equivalent.7219.Answer any <i>two</i> of the following: a)a)Show that congruence modulo m is an equivalence relation on integers.b)Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 7$ 44447251011.1211.1212.1213.1214.1215.1316.1417.1418.2519.2619.3719.4119.4110.4110.4110.4111.4212.41	15.	a)	Let $X = \{1, 2, 3, 4, 5, 6, 7\}$ and	7	4	3	1,12
11?16. a)Solve the recurrence relation $a_n - a_{n-1} - 12a_{n-2} = 0$, $a_0 = 0, a_1 = 1$ 74411?b)Use generating functions to solve the recurrence relations $a_r = 7$ 34 $a_{r-1} + a_{r-2}$ with $a_1 = 2$ and $a_2 = 3$ 17. a)Show that $(A,*)$ is a non-abelian group where A= R x R and(a,b)*(c,d) = (ac, bc+d).b)If (F, +, .) is a field then prove that it is an Integral Domain.72518. a)Show that $\sim (p \lor (\sim p \land q) \text{ and} (\sim p \land \sim q) \text{ are logically Equivalent.}$ 7219.Answer any <i>two</i> of the following:a)a)Show that congruence modulo m is an equivalence relation on integers.b)Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 7$ 444725112113.114.115.115.115.116.116.117.118.119.119.119.119.119.119.1111.1111.1111.1111.1111.1111.1111.1111.1111.1111.1111.1111.1111.1111.1111.<							ink
b) Use generating functions to solve the recurrence relations $a_r = 7$ 3 4 1,12 $a_{r-1} + a_{r-2}$ with $a_1 = 2$ and $a_2 = 3$ 17. a) Show that $(A,*)$ is a non-abelian group where A= R x R and (a,b) * (c,d) = (ac, bc+d). b) If $(F, +, .)$ is a field then prove that it is an Integral Domain. 18. a) Show that $\sim (p \lor (\sim p \land q))$ and $(\sim p \land \sim q)$ are logically Equivalent. b) State and prove Fermat's Little theorem. 19. Answer any <i>two</i> of the following: a) Show that congruence modulo m is an equivalence relation on integers. b) Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 7$ 4 4 1,12 c) If H is a non-empty sub-group of a group G then prove that H is a sub- 7 2 5 1,12		b)		7	3	3	1,12
ar-1 + a_{r-2} with $a_1 = 2$ and $a_2 = 3$ 17. a)Show that $(A,*)$ is a non-abelian group where $A = R \times R$ and $(a,b) * (c,d) = (ac, bc+d)$.b)If $(F, +, .)$ is a field then prove that it is an Integral Domain.7218. a)Show that $\sim (p \lor (\sim p \land q) \text{ and} (\sim p \land \sim q) \text{ are logically Equivalent.}$ 7219.Answer any <i>two</i> of the following: a)a)Show that congruence modulo m is an equivalence relation on integers.b)Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} =$ 74472727319.19.19.19.19.19.19.19.19.19.10.10.10.11.12.13.14.15.15.16.17.18.19.19.10.10.10.11.12.13.14.15.15.16.17.17.18.19.19.19.19.19.19.19.19.19.19.19.19.19.19.19.19.19.19. <tr< td=""><td>16.</td><td>a)</td><td>Solve the recurrence relation $a_n - a_{n-1} - 12a_{n-2} = 0$, $a_0 = 0, a_1 = 1$</td><td>7</td><td>4</td><td>4</td><td>1,12</td></tr<>	16.	a)	Solve the recurrence relation $a_n - a_{n-1} - 12a_{n-2} = 0$, $a_0 = 0, a_1 = 1$	7	4	4	1,12
17. a)Show that $(A,*)$ is a non-abelian group where $A = R \times R$ and $(a,b) * (c,d) = (ac, bc+d)$.7451,12b)If $(F, +, .)$ is a field then prove that it is an Integral Domain.7251,1218. a)Show that $\sim (p \vee (\sim p \land q) \text{ and} (\sim p \land \sim q) \text{ are logically Equivalent.}$ 7511,12b)State and prove Fermat's Little theorem.7221,1219.Answer any <i>two</i> of the following:7331,12a)Show that congruence modulo m is an equivalence relation on integers.7331,12b)Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} =$ 7441,12c)If H is a non-empty sub-group of a group G then prove that H is a sub-7251,12		b)	•	7	3	4	1,12
(a,b) * (c,d) = (ac, bc+d).b)If (F, +, .) is a field then prove that it is an Integral Domain.7218. a)Show that $\sim (p \lor (\sim p \land q) \text{ and} (\sim p \land \sim q) \text{ are logically Equivalent.}$ 75119.Answer any <i>two</i> of the following:a)Show that congruence modulo m is an equivalence relation on integers.b)Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} =$ 74419. <td></td> <td></td> <td>$a_1 = 2 \text{ and } a_2 = 3$</td> <td></td> <td></td> <td></td> <td></td>			$a_1 = 2 \text{ and } a_2 = 3$				
 b) If (F, +, .) is a field then prove that it is an Integral Domain. 18. a) Show that ~(p ∨ (~ p ∧ q) and (~ p ∧~ q) are logically Equivalent. 7 5 1 1,12 b) State and prove Fermat's Little theorem. 7 2 2 1,12 19. Answer any <i>two</i> of the following: a) Show that congruence modulo m is an equivalence relation on integers. b) Find all solutions of the recurrence relation a_n - 7a_{n-1} + 10a_{n-2} = 7 4 4 1,12 c) If H is a non-empty sub-group of a group G then prove that H is a sub- 7 2 5 1,12 	17.	a)	Show that $(A,*)$ is a non-abelian group where $A = R \times R$ and	7	4	5	1,12
18. a)Show that $\sim (p \lor (\sim p \land q) \text{ and}(\sim p \land \sim q) \text{ are logically Equivalent.}$ 7511,12b)State and prove Fermat's Little theorem.7221,1219.Answer any <i>two</i> of the following:7331,12a)Show that congruence modulo m is an equivalence relation on integers.7331,12b)Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} =$ 7441,12c)If H is a non-empty sub-group of a group G then prove that H is a sub-7251,12			(a,b) * (c,d) = (ac, bc+d).	T.am			
 b) State and prove Fermat's Little theorem. 7 2 2 1,12 19. Answer any <i>two</i> of the following: a) Show that congruence modulo m is an equivalence relation on integers. b) Find all solutions of the recurrence relation a_n - 7a_{n-1} + 10a_{n-2} = 7 4 4 1,12 c) If H is a non-empty sub-group of a group G then prove that H is a sub- 7 2 5 1,12 		b)	If $(F, +, .)$ is a field then prove that it is an Integral Domain.	7	2	5	1,12
 19. Answer any <i>two</i> of the following: a) Show that congruence modulo m is an equivalence relation on relation on regres. b) Find all solutions of the recurrence relation a_n - 7a_{n-1} + 10a_{n-2} = relation 4ⁿ c) If H is a non-empty sub-group of a group G then prove that H is a sub-relation relation relat	18.	a)	Show that $\sim (p \lor (\sim p \land q) \text{ and} (\sim p \land \sim q)$ are logically Equivalent.	7	5	1	1,12
 a) Show that congruence modulo m is an equivalence relation on 7 3 3 1,12 integers. b) Find all solutions of the recurrence relation a_n - 7a_{n-1} + 10a_{n-2} = 7 4 4 1,12 4ⁿ c) If H is a non-empty sub-group of a group G then prove that H is a sub- 7 2 5 1,12 		b)	State and prove Fermat's Little theorem.	7	2	2	1,12
integers. b) Find all solutions of the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 7 4 4 1,12$ c) If H is a non-empty sub-group of a group G then prove that H is a sub- 7 2 5 1,12	19.		Answer any two of the following:	in inter			
 4ⁿ c) If H is a non-empty sub-group of a group G then prove that H is a sub- 7 2 5 1,12 		a)		7	3	3	1,12
		b)		7	4	4	1,12
		c)		7	2	5	1,12
b) for all $a \in H$, $a^{-1} \in H$.		-	b) for all $a \in H$, $a^{-1} \in H$.				

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PC

O: Programme	Outcome
--------------	---------

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	38
2	Knowledge on application and analysis (Level-3 & 4)	62
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable)	0

:: 2 ::